
A Generic Technique for Sketches to Adapt to
Different Counting Ranges

Tong Yang1, Jiaqi Xu1, Xilai Liu1, Peng Liu1, Lun Wang1, Jun Bi2, Xiaoming Li1
1Department of Computer Science, Peking University, China

2Institute of Network Science & Cyberspace, Tsinghua University, China

Abstract—Sketch is a compact data structure for network
measurements. To achieve fast speed, it needs to be held in the on-
chip memory (SRAM), which is very small. To enable the sketch
fit into the on-chip memory, the product of counter size and
number of counters must be below a certain limit. If we use small
counters, e.g., 8 bits, some counters will overflow. If we use large
counters, e.g., 16 bits per counter, the total number of counters
will be small, each counter will be shared by more flows, leading
to poor accuracy. To address this issue, we propose a generic
technique: self-adaptive counters (SA Counter). When the value
of the counter is small, it works as a normal counter. When the
value of the counter is large, we increment it using a predefined
probability, so as to represent a large value. Moreover, in SA
Counter, the probability decreases when the value increases. This
technique can significantly improve the accuracy of sketches. To
verify the effectiveness of SA Counter, we apply SA Counter
to three typical sketches, and conduct extensive experiments on
one real dataset and one synthetic dataset. Experimental results
show that, compared with the state-of-the-art, sketches using SA
Counter improve the accuracy by up to 13.6 times. *

I. INTRODUCTION

A. Background and Motivation
Network measurements provide indispensable information

for congestion control [1], [2], DDoS attack detection [3], [4],
heavy hitter identification [5]–[7], heavy change detection [8],
and more [9], [10]. Measuring the size of different flows
(known as per-flow size measurements, or per-flow measure-
ments for short) in network traffic has attracted attentions in
recent years [11]–[14]. Flow identifiers (flow IDs) are selected
from the header fields of packets, such as the five-tuple: source
IP address, source port, destination IP address, destination
port, protocol. Flow size is defined as the number of packets
in a flow. Flow volume is defined as the number of bytes in
the flow.

As the line rate can be high, e.g., 10Gbps, 40Gbps, it is
challenging to perform per-flow measurements at line rate. To
achieve high processing speed, the data structure should be
small enough to be stored in the on-chip memory, such as a
Block RAM in FPGA or ASIC chips [15], or the caches of
CPU or GPU chips. However, the size of on-chip memory is
very limited (usually less than 8.25MB [15]). This means that
it is almost impossible to keep one counter for each flow to
record the flow size. To achieve memory efficiency, various
sketches (e.g., sketch of CountMin (CM) [16], Conservative

*Tong Yang and Jiaqi Xu contributed equally to this work. Jun Bi
(junbi@tsinghua.edu.cn) is the corresponding author.

Update (CU) [17] and Count (C) [18]) allow counters to be
randomly shared by multiple flows, inevitably incurring errors.

In real network traffic, it is well known that the flow
size/volume distribution is highly skewed [14], [17], [19]–[24].
Specifically, most flows are very small in size, often known
as mouse flows; while a few are very large, often known as
elephant flows. As elephant flows are typically more important
than the small ones, the size of each counter needs to be large
enough to store the largest flow. Further, in many practical
scenarios, one does not have any idea of the approximate
flow size of elephant flows beforehand. Given the limited
size of on-chip memory, if we use large counters, the number
of counters will be small, and each counter will be shared
by more flows, leading to poor accuracy. In this case, most
counters are mapped by mouse flows, keeping a small value,
and thus their significant bits are wasted. Therefore, if we use
large counters, it will be a waste of memory, and the accuracy
will be poor. In summary, it is challenging to achieve memory
efficiency in skewed network traffic.
B. Prior Art and Their Limitations

There are primarily two kinds of algorithms for per-flow
measurements. The first kind is based on sampling [25]. How-
ever, recent works [12], [13], [26] pointed out that the sam-
pling method might lose important information. The other kind
is based on a compact data structure called sketch. There are
three classic sketches: sketches of Count [18], CM [16], and
CU [17]. The CM sketch is the most widely used one. These
sketches share the same data structure and similar operations.
Therefore, we only present the details of the CM sketch here.
A CM sketch consists of d arrays, each of which is associated
with a hash function, denoted by h1(.) . . . hd(.). The ith array
is represented by Ai. Each array consists of w counters. When
inserting a packet with flow ID e, the CM sketch adds the
packet size of e to the d counters: A1[h1(e)] . . . Ad[hd(e)],
called the d mapped counters in this paper. When querying
item e, the CM sketch reports the minimum value among d
mapped counters: min{A1[h1(e)] . . . Ad[hd(e)]}. Obviously,
the accuracy of the CM sketch will decrease as the number
of counters decreases. However, as each counter needs to be
large enough to store the largest flows, the CM sketch cannot
achieve memory efficiency, so do sketches of C and CU. To
achieve memory efficiency, small counters must be used. The
state-of-the-art named Counter tree [27] uses multiple layers
of small counters, and the counters at the higher layers are
used to store the significant bits of the elephant flow sizes. In

this way, it can improve the memory efficiency. Unfortunately,
for each packet belonging to an elephant flow, Counter-Tree
needs to access all layers, requiring many memory accesses for
each insertion. This problem gets worse when elephant flows
dominate the network traffic. It is therefore very important to
achieve memory efficiency, while ensuring fast and constant
processing speed to keep up with line rate.

C. Our Solution
In this paper, we propose a generic technique aimed at

making every bit count. Our technique is applicable for all
sketches using counters. Recalling that the design goal is to
achieve both memory efficiency and fast, constant speed. To
achieve memory efficiency, we have to use small counters.
To achieve constant and fast processing speed, to make the
data structure as easy to use by real applications, we do not
introduce multiple layers or change the basic data structure of
sketches. Our challenge is that each small counter has to be
able to represent the size of both mouse and elephant flows.

Our key idea is simple: when a counter is going to overflow,
for each insertion, instead of always increasing it, we increase
it with a predefined probability. When the value of the counter
is small (e.g., is mapped by one or several mouse flows), we
consider it as a normal counter, so as to achieve high accuracy.
By carefully designing the probability setting, we can use a
small counter to represent a very large value. Introducing this
probability could incur inaccurate recording of large values.
Fortunately, we prove theoretically and experimentally that the
incurred inaccuracy is negligible compared to the large value
of the size of elephant flows.

Based on the above idea, we propose two versions of our
technique: Static Sign Bits version and Dynamic Sign Bits
version. Our technique splits each counter into two parts: (1)
sign bits, and (2) counting bits. When the sign bits are all 0,
we increment the counting bits normally; when the sign bits
are non-zero, we increment the counting bits with a probability
calculated by the value of the sign bits. As the number of bits
of each counter is fixed, if we assign more bits as sign bits,
the number of counting bits will decrease. In this case, the
counter cannot accurately record the size of mouse flows.

For the static version, we fix the length of sign bits in
advance, and then do not change it during insertions. As a
result, the shortcoming of the static version is that it is hard
to determine how many bits should be assigned for the sign
bits. To address this issue, we propose the Dynamic Sign
Bits version, which uses a self-adaptive method, and can
dynamically adjust the length of sign bits according to the
value that the counter needs to represent. The self-adaptive
method works as follows: we regard all continuous 1 bits from
the left as sign bits. The leftmost 0 bit is seen as a marker,
namely, the split bit, and others are counting bits. For example,
given a counter with value 11101011, it means the following.
The first three bits are sign bits, representing a value of 3. The
fourth bit 0 is the split bit which splits the sign and counting
bits. The last four bits 1011 are the counting bits. More details
about the self-adaptive methods are provided in Section III-B.

D. Key Contributions
1) We propose a generic sketch technique in two versions,

static and dynamic. Using our technique, sketches can
use small counters to accurately record the sizes of both
elephant and mouse flows, achieving memory efficiency
as well as constant and fast speed. We have applied our
technique to sketches of CM, CU and C.

2) We conduct a detailed analysis of self-adaptive counters
to show their theoretical properties.

3) We carry out extensive experiments, and provide re-
sults on two real datasets and one synthetic dataset,
demonstrating the superior performance of self-adaptive
counters.

II. RELATED WORK
For per-flow measurement, there are two kinds of methods:

sampling and sketches. The authors in [28] prove that sampling
has poor accuracy, and propose an algorithm to improve
the accuracy. To improve the accuracy, various sketches are
proposed, including CM sketch [16], CU sketch [17], C
sketch [18] and many other advanced techniques like A
sketch [14], CSM sketch [29], Tug-of-war sketch [30] and its
enhanced version [31], AMS sketch [32], and more [33]–[36].
Due to space limitation, we briefly introduce typical sketches.

A. CU Sketch
The CU sketch [17] has the same structure as the CM sketch,

but its insertion strategy is optimized using “conservative
update”. When inserting a packet e, it only adds the metric
of interest of e to the smallest counter(s) among d mapped
counters. When querying packet e, the CU sketch reports the
minimum value among d mapped counters.

B. C Sketch
The C sketch [18] is different from the CM and CU sketch in

the sense that each array is associated with two hash functions.
Besides d hash functions h1(.) · · ·hd(.), there are additional d
hash functions s1(.) · · · sd(.) mapping each incoming packet
to {+1,−1}. If the result of the second hash function is +1,
then the insertion proceeds as usual. Otherwise, the metric of
interest of the packet will be subtracted from the d mapped
counters. When querying, it will report the absolute value of
the median one of i{A[hi(key)] × si(key)}, where i is in
0, 1, · · · , d− 1.

C. Sophisticated Sketches
Many advanced sketch techniques have been proposed re-

cently [37]–[39]. The augmented sketch (A sketch) [14] is
targeted at improving accuracy by using one additional filter
to dynamically capture packets from heavy-hitters. The CSM
sketch [29] provides a data encoding and decoding scheme.
Two offline statistical methods are proposed in this sketch in
order to extract query results.

The Counter-Tree [27] provides a scalable architecture for
per-flow measurements. The key idea of the Counter-Tree is
to rearrange the counter sharing scheme based on the CM
sketch. The authors claim that their 2-D tree structure is able

to work with very tight space. However, in terms of accuracy,
the performance of the Counter-Tree is not as good as the
original CM sketch under the same memory usage. Moreover,
the CM sketch and other typical sketches support the (ID, f)-
insertion where f > 1. The Counter-Tree on the other hand
only supports (ID, 1)-insertions, which makes it unsuitable in
applications like flow volume measurements.

III. THE SA COUNTER TECHNIQUE

In this section, we describe our SA Counter (Self-Adaptive
Counters) approach. We propose two versions of SA Counter,
a Static Sign Bits version and a Dynamic Sign Bits version.
Inspired by floating-point number representation, the Static
Sign Bits version uses some sign bits to adjust the magnitude
of the counters, to enable the counters to represent larger
values. However, it is hard to determine an appropriate length
for the sign bits so that the mouse flows can be accurately
recorded. To overcome the weakness of the static version, we
further design a dynamic version.
A. Static Sign Bits Version

Rationale: Given a sketch, let n be the counter size, i.e., the
number of bits in a counter. To achieve memory efficiency,
we need to use fine-grained counters, i.e., small counters (e.g.,
n = 8). The capacity of the counters, i.e., the maximum value
that counters can represent, is fixed to 2n-1. However, when a
counter is mapped by too many flows, especially large ones,
the value of the counter will easily exceed 2n-1.

Our technique is inspired by, but different from the encoding
style of floating-point numbers. In a typical floating-point
representation, the value can be calculated using the following
three parts: 1) a sign digit indicating the value to be positive
or negative. 2) exponent digits which represent an integer that
controls the magnitude of this representation. 3) significant
digits that carry meaning contributing to its measurement
resolution. Similarly, in our technique, we also split a counter
into two parts: a Sign Bits part (sign part for convenience)
and a Counting Bits part (counting part for convenience). The
counting part functions as the significant digits, while the sign
part functions as the exponent digits. Specifically, for each
possible value of the sign part, we pre-define a corresponding
integer indicating how many times the counting part should be
expanded. We call this pre-defined array the expansion array.
Self Adaptive Counter (SA Counter): Our technique is
called Self-Adaptive Counters (SA Counter). Every counter of
existing sketches can be replaced by a Self-Adaptive Counter
(SA Counter). Next we show the data structure and operations
of SA Counter.
Data Structure: Assume a sketch has d counter arrays,
A1, A2, · · · , Ad. For the i-th counter array, it has w counters
and a hash function hi(.). Let n be the number of bits in
the counters. For each counter, it has a s-bit sign part and a
(n-s)-bit counting part as shown in Figure 1. We denote the
expansion array as γ[0], γ[1], · · · , γ[k−1], where k = 2s. For
example, γ[i] = 2i. After setting up all the above parameters,
the capacity of the Static Sign Bits version SA Counter is
Cstatic(n, s) =

∑2s−1
i=0 (γ[i]× 2n−s).

0 1 0 1 1 1 1 1

0 1 1 0 0 0 0 0

𝛾[2]=4
Sign	part:	3 Counting	part:	31

insert	(e,	1)

Sign	part:	+1 Counting	part:	0

𝛾[3]=8

𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒	𝑡ℎ𝑒	𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔	𝑝𝑎𝑟𝑡	
𝑏𝑦	1	𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	 67[9]

𝑠𝑒𝑡	𝑡ℎ𝑒	𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔	𝑝𝑎𝑟	𝑡𝑜	0

Fig. 1. An example of SA Counter with Static Sign Bits, where n = 8
and s = 3. To insert a pair (e, 1), the counting part is increased by 1 with
probability of 1

4
. If the counting part overflows, we increase the sign part by

1, and get a new expansion parameter γ[3] = 8.

Insertion: Take the CM sketch using Static Sign Bits version
SA Counter as an example. We show the procedure to insert a
flow with volume 1. The procedure to insert a flow with larger
volume can be seen in Algorithm 1 in Section IV.

To insert a flow with size 1, we first locate d counters using
d hash functions. Next, we show the steps of how to add 1 to
an SA Counter.

Step 1: In an SA counter, we get the sign part s0, the
counting part c0, and the value γ[s0] from the expansion array.

Step 2: Since γ[s0] indicates how many times the counting
part should be expanded, we first calculate 1

γ[s0]
, and add 1 to

the counting part with probability 1
γ[s0]

.

Step 3: If the counting part reaches 2n−s, we increase the
sign part by 1, and set the counting part to zero.
Query: To query a flow in a sketch using our SA Counter
with Static Sign Bits, we first locate several counters using d
hash functions. Then, for a mapped counter C, we calculate
the value represented by C as follows:
1) First, we get the value of the sign part s0 and the value of
the counting part c0. Then, we find γ[s0] from the expansion
array and another value stage[s0] from the stage array. The
stage array is pre-computed using the following formula:

stage[0] = 0,

stage[i] = 2n−s ×
i−1∑
j=0

γ[j], i > 0
(1)

2) The value represented by C can be calculated with the
following formula:

value(C) = c0 × γ[s0] + stage[s0]. (2)

The problem of the Static Sign Bits version is that, since
we do not know the size of the mouse flows, we cannot
determine an appropriate length for the counting and sign
parts. Specifically, when the sign part is zero, the flow size
is accurately recorded. When we use a large sign part, the
counting part will be shortened, and thus the counter may not
accurately record the mouse flows.

B. Dynamic Sign Bits Version

Rationale: Given a fixed counter size, to address the issue
of the space taken by a fixed-length sign part, we can use a
self-adaptive method to dynamically adjust it. The length of

the sign part is initialized to 0. Except for the split digit, all
other bits are used for counting. As the value represented by
the counter becomes larger, we increase the length of the sign
part dynamically. In this way, we can accurately record mouse
flows, while being able to deal with elephant flows.
Data Structure: An n-bit Dynamic Sign Bits version SA
Counter has three parts: 1) a sign part whose length ls is made
up by ones, 2) a split digit which is the leftmost zero digit,
3) a (n-ls-1)-bit counting part. We create an expansion array
γ[0], γ[1], · · · , γ[n−2]. After setting up the above parameters,
the capacity of the Dynamic Sign Bits version SA Counter is
Cdynamic(n)

∑s−2
i=0 (γ[i]× 2n−i−1).

sign	part

1 … … 1 0 1/0 1/0

counting	partsplit	digit

Fig. 2. Structure of Dynamic Sign Bits SA Counter.

Insertion: The insertion process of the dynamic version of
SA Counter is similar to the static version, except for two
differences: (1) In the dynamic version, the value of the sign
part, i.e., s0, is equal to the number of ones in the sign part;
For example, the value of the sign part in“111011” is 3. (2)
In the dynamic version, when the counting part overflows, we
turn the split digit to 1, and set the bits of the counting part
to all zeroes. By doing this, the length of the sign part is
increased by 1, the split digit is moved right by 1 bit, and the
counting part is shortened by 1 bit.
Query: The query process of the dynamic version of SA
Counter is similar to the static version. To calculate the value
of an SA Counter with Dynamic Sign Bits, the first step is also
to get s0 and c0 from the counter, and read the value γ[s0] and
stage[s0] from the expansion and stage arrays, respectively.
The two differences are that s0 is the length of the sign part,
and the stage array is computed by the following formula:

stage[0] = 0

stage[i] =

i−1∑
j=0

(
γ[j]× 2n−j−1

)
, i > 0

(3)

The second step is the same as the static version. The
value represented by a dynamic version SA Counter can be
calculated using Formula 2.

IV. CASE STUDIES

To further illustrate the generality of the SA Counter tech-
nique, in this section, we show how to apply SA Counter to
the sketches of CM [16], CU [17] and C [18]. Two functions,
read and update of SA Counters are shown as follow.

A. Apply to the CM Sketch

In CM sketch, the insertion procedure is done by calling
the “update” function of the corresponding SA Counter. The
query function is done by reporting the minimum value “read”
by all corresponding counters.

B. Apply to the CU Sketch
The CU sketch is similar to the CM sketch but with

a different update technique called “conservative update of
counters”. In a CU sketch, the insertion procedure is done by
calling the “update” function on the smallest counters in SA
Counter. The query process is the same as for the CM sketch.
C. Apply to the C Sketch

The C sketch consists of an array with t× k counters. One
important feature of the C sketch is that it requires two sets
of hash functions h[1] · · ·h[t] and g[1] · · · g[t], where h[i] :
[0, n] → [0, k] , g[i] : [0, n] → {−1, 1}. Negative values can
occur in the counters, so the first bit of each counter should
be the sign bit. When inserting a packet, the sketch calls the
“update” procedure of SA Counter to add the value to the
corresponding counter. The query function is done by reporting
the median value “read” by all corresponding counters.

Since we may add a negative number to the counters in
the C sketch, in the two functions, i.e., read and update, we
use the leftmost bit of a SA Counter to indicate whether the
counter is positive or negative. As shown in Algorithm 1, the
read function takes a counter c and the expansion array γ as
input, and outputs the value represented by the counter. As
shown in Algorithm 1, the update function takes a counter c,
an increment value c, and the expansion array γ as input.

Algorithm 1: read and update function of SA Counters
read: (a counter c, an expansion array γ)

1: d = c
2: if c < 0 then
3: c̃+ 1→| d, thus d is the two’s complement of c
4: s0: value of the sign part in d
5: c0: value of the counting part in d
6: result = stage[s0 − 1] + (γ[s0]× c0)
7: if c < 0 then
8: −result→| result
9: return result

update: (a counter c, a value v, an expansion array γ)
1: if read(c, γ) +v 6 Cdynamic(n) then
2: d = c
3: if c < 0 then
4: c̃+ 1→| d, thus d is the two’s complement of c
5: s0: value of the sign part in d
6: c0: value of the counting part in d
7: q = v

γ[s0]
, r = v%γ[s0]

8: if r 6= 0 then
9: p: a random number in [0, 1]

10: if p < r
γ[s0]

then
11: c+ 1→| c
12: if 0 < q < stage[s0]− c0 then
13: c+ q →| c
14: if q > stage[s0]− c0 then
15: v′ = v − (stage[s0]− c0)× γ[s0]
16: stage[s0]→| x
17: update(c, v′, γ)

V. EXPERIMENTAL RESULTS

In this section, we first evaluate the SA Counter technique
on a real-world dataset by comparing the Average Relative
Error (ARE) and the Average Absolute Error (AAE) between
sketches without SA Counter, with SA Counter and Counter-
Tree. Then, we generate a synthetic dataset which follows
the Zipf distribution. We study how the ARE and AAE
values change with different parameters. These parameters are
defined in Section V-B.

A. Experimental Setup

1) Datasets:
a) IP Trace Datasets: We use the anonymous IP traces

collected in 2016 from CAIDA [40]. In the experiments, a
five-tuple is used as the ID of a flow, which includes, source IP
address, destination IP address, source port, destination port,
and protocol. Each arriving packet consists of a certain amount
of bytes. The job of the sketch algorithm is to add up the
number of bytes for each flow separately, and report the total
size (in bytes) for every flow in the data stream at the end of
a certain time period.

b) Synthetic Datasets: Since our goal is to find out how
well SA Counter sketch performs on datasets with different
characteristics, we also generate synthetic datasets following
the Zipf [41] distribution (p(x) = x−a

ζ(a)) with different total
flow sizes F (1M to 10M), different numbers of packets Nd,
and different a (from 0 to 3.0 with a step of 0.3). We generate
them using a performance testing tool: Web Polygraph [42].

2) Implementation: We have implemented the sketches of
CM, CU and C in C++. We apply the SA Counter technique
to these sketches, and the results are denoted as SAC CM,
SAC CU, and SAC C. For comparison purpose, we also
implemented Counter-Tree in C++, the result is denoted as CT
in our experiments. The hash functions used in the sketches
are implemented using the 32-bit or 64-bit Bob Hash [43] with
different initial seeds. For the CM and CU sketches, we set
the number of arrays to 3 and use 3 32-bit Bob Hashes. For
the C sketch, we set the number of arrays to 3 and use 6 32-
bit Bob Hashes. We set the counters to 32 or 16 bits in the
classical sketches. In the sketches using SA Counter, the size
of the counters is reduced to 16 or 8 bits. Furthermore, for
each experiment on the datasets, we run 10 sub-experiments.
The average value of the result is recorded as well as the mean
square error. Both of them are plotted on the figures.

B. Metrics

Average Absolute Error (AAE): AAE is defined as
1
|φ|
∑
i∈[n] |fi − f̂i|, where fi is the frequency of token i that

appears in the stream, f̂i is the estimated frequency and |Φ| is
the volume of the set.
Average Relative Error (ARE): ARE is defined as
1
|φ|
∑
i∈[n]

|fi−f̂i|
fi

, where fi is the frequency of token i that
appears in the stream, f̂i is the estimated frequency and |Φ| is
the volume of the set.

Per-Flow Memory consumption: This quantity is defined as
the overall memory size of the sketch divided by the number
of different flows in a data stream.
Per-Packet Memory consumption: Per-Packet Memory con-
sumption is defined as the sketch memory size divided by the
number of packets in a data stream.
Throughput: Maximum number of insertions that can be pro-
cessed per second. We use Mega-operations per second(Mops)
[44]–[46] as the unit of throughput. All the experiments about
speed are repeated 100 times to ensure statistical significance.

C. Effects of SA Counter technique
1) Flow volume measurements on CAIDA dataset: Since

the Counter-Tree does not support flow volume measurements,
we only compare our technique with the original sketch in this
set of experiments.
Effect of SA Counter on CM sketch’s ARE and AAE
(Figures 3(a) and 3(d)): The range of the memory size in
this experiment is from 125KB to 1000KB. Here, the original
CM sketch is compared with the CM sketch using SA Counter
using the Dynamic Sign Bits version. We plot how the ARE
and AAE (in log scale) change as a function of memory
size. Our results show that when the memory is 1000KB, the
original CM sketch has 8.7 times higher ARE than the CM
sketch using SA Counter. When the memory is below 600KB,
the CM sketch using SA Counter have both lower ARE and
AAE.
Effect of SA Counter on C sketch’s ARE and AAE
(Figures 3(b) and 3(e)): Our experimental results show that
the original C sketch has 4.27 times higher ARE and 3
times higher AAE than C sketch using SA Counter, when the
memory is 1000KB. The SA Counter technique successfully
reduces the ARE and AAE in the case of the C sketch.
Comparing these results with those from the CM sketch, we
can see that the CM sketch gives a better estimation of flow
size than the C sketch for the same memory size.
Effect of SA Counter on CU sketch’s ARE and AAE
(Figures 3(c) and 3(f)): Our experimental results show that
the original CU sketch has 10.9 times higher ARE than CU
sketch using SA Counter when the memory is 1000KB. The
SA Counter technique successfully reduces the ARE and AAE
under small memory consumption in the case of the CU
sketch. Comparing this result with the results of the CM and
C sketches, we see that the CU sketch using SA Counter has
the best performance of all.
Conclusion: In this set of experiments, we tested our SA
Counter technique for flow volume measurements. We found
that the CU sketch using SA Counter has the best performance
of all sketches, hence we suggest its use for flow size mea-
surements.

2) Flow size measurements on synthetic datasets: In this
experiment, we generate datasets following the Zipf distribu-
tion (p(x) = x−a

ζ(a)) with different flow sizes and varying a
(ranging from 0 to 2.1). Here the task consists in measuring
the flow size of each flow in the dataset [47]–[49]. We compare

 0.0001

 0.001

 0.01

 0.1

 1

 0 300 600 900 1200

A
R

E

Memory(KB)

CM
SAC CM

(a) ARE vs memory(CAIDA)

 0.001

 0.01

 0.1

 1

 10

 0 300 600 900 1200

A
R

E

Memory(KB)

C
SAC C

(b) ARE vs memory(CAIDA)

10-5

10-4

10-3

10-2

10-1

100

 0 300 600 900 1200

A
R

E

Memory(KB)

CU
SAC CU

(c) ARE vs memory(CAIDA)

 0.1

 1

 10

 100

 0 300 600 900 1200

A
A

E

Memory(KB)

CM
SAC CM

(d) AAE vs memory(CAIDA)

 1

 10

 100

 1000

 0 300 600 900 1200

A
A

E

Memory(KB)

C
SAC C

(e) AAE vs memory(CAIDA)

 0.01

 0.1

 1

 10

 100

 0 300 600 900 1200

A
A

E

Memory(KB)

CU
SAC CU

(f) AAE vs memory(CAIDA)

Fig. 3. ARE and AAE as a function of memory consumption for different sketches (CM, C and CU) with and without SA Counter on a Real World Dataset.

the ARE and AAE of the original sketches, of sketches using
SA Counter, and of Counter-Tree.

Effect of SA Counter on CM sketch’s ARE and AAE
(Figures 4(a) and 4(d)): We find that when the memory is
1000KB, the original CM sketch has 2.5 times higher ARE
and AAE than the CM sketch using SA Counter, while the
Counter-Tree has an ARE 5.3 times higher than the CM sketch
using SA Counter. As the memory consumption decreases, the
ARE and AAE of Counter-Tree gradually go down compared
to the one of the CM sketch. The ARE and AAE of the CM
sketch using SA Counter are always the lowest.

Effect of SA Counter on C sketch’s ARE and AAE
(Figures 4(b) and 4(e)): We observe that when the memory is
1000KB, the original C sketch has 1.5 times higher ARE and
AAE than the C sketch using SA Counter, while the Counter-
Tree has an ARE 13.6 times higher than the C sketch using
SA Counter. The ARE and AAE of the C sketch using SA
Counter are the lowest under all memory sizes. Note that
compared to Counter-Tree, the C sketch using SA Counter
improves accuracy by one order of magnitude.

Effect of SA Counter on CU sketch’s ARE and AAE
(Figure 4(c) and 4(f)): We find that when the memory is
1000KB, the original CU sketch has 2.7 times higher ARE
and AAE than the CU sketch using SA Counter while Counter-
Tree has an ARE 10.6 times higher than the CU sketch using
SA Counter. As the memory consumption decreases, the ARE
and AAE of Counter-Tree gradually become close to the one
of the CU sketch. However, the ARE and AAE of the CM
sketch using SA Counter are always lowest.

CU sketch using SA Counter’s ARE on synthetic datasets
with different skewness (Figure 4(g)): We find that the
ARE decreases with the increase of skewness. The ARE for a
skewness of 0 is 9.4 times higher than the ARE when skewness
is 2.1. This means the CU sketch using SA Counter is also
accurate with very skewed datasets.

Throughput of CM sketch using SA Counter (Figure 4(h)):
Our experimental results show that when memory consump-
tion is 1000KB, the throughput of the CM sketch using SA
Counter is 1.4 times higher than that of Counter-Tree. The
throughput of the original CM sketch is the highest.

Conclusion: In this set of experiments, we tested our SA
Counter technique for flow size measurements. We found that
the C sketch using SA Counter has the best performance of all
sketches, hence we suggest its use for flow size measurements.

Effect of per-packet memory size on C sketch’s ARE
and AAE with fixed a and per-flow memory consumption
(Figures 5(a) and 5(c)): We find that for the C sketch, the
change of per-packet memory affects ARE in a limited way
compared to per-flow memory consumption. The AAE of both
the C sketch and the C sketch using SA Counter drops with
the increase of per-flow memory consumption. The original C
sketch has 2 to 3 times larger AAE than SA Counter sketches.
Effect of memory size on CM sketch’s ARE and AAE with
fixed a and per-flow memory consumption (Figures 5(b)
and 5(d)): We find that the original CM sketch has larger
ARE and AAE values compared to the CM sketch using SA
Counter. The AAE of both the CM sketch and the CM sketch
using SA Counter drop with the increase of per-flow memory

 1

 10

 100

 0 300 600 900 1200

A
R

E

Memory(KB)

CT
CU
SAC CU

(a) ARE of CM sketch(zipf)

 0.1

 1

 10

 100

 0 300 600 900 1200

A
R

E

Memory(KB)

CT
C
SAC C

(b) ARE of C sketch(zipf)

 1

 10

 100

 0 300 600 900 1200

A
R

E

Memory(KB)

CT
CU
SAC CU

(c) ARE of CU sketch(zipf)

 1

 10

 100

 0 300 600 900 1200

A
A

E

Memory(KB)

CT
CM
SAC CM

(d) AAE of CM sketch(zipf)

 0.1

 1

 10

 100

 0 300 600 900 1200

A
A

E

Memory(KB)

CT
C
SAC C

(e) AAE of C sketch(zipf)

 1

 10

 100

 0 300 600 900 1200

A
A

E

Memory(KB)

CT
CU
SAC CU

(f) AAE of CU sketch(zipf)

 1

 10

 100

 0 300 600 900 1200

A
R

E

Memory(KB)

skewness=0
skewness=0.6
skewness=1.2
skewness=2.1

(g) ARE vs memory(zipf datasets with different skewness)

 10

 15

 20

 25

 30

 35

 200 400 600 800 1000

T
h
ro

u
g
h
p
u
t(

M
o
p
s)

Memory(KB)

CM
SAC CM(dynamic)
SAC CM(static)
CT

(h) Throughput vs memory
Fig. 4. Experiments on Synthetic Datasets.

consumption. The original C sketch has more than 10 times
larger AAE than SA Counter sketches.

Conclusion: We found that the SA Counter technique
effectively adapted to different counting ranges. For the C
sketch and the CM sketch, the change of per-packet memory
consumption affects ARE in a limited way compared to
the change of per-flow memory. However, AAE drops with
the increase of per-packet memory size. Under the same
per-packet memory size, the ARE increases at least 10% when
per-flow memory changes from 48 × 10−4B to 24 × 10−4B
or 24× 10−4B to 16× 10−4B. Indeed, it shows that in a data
stream with many distinct packets, the SA Counter technique
can improve the accuracy under small per-flow memory size.

Effect of the different versions of the CM sketch using
SA Counter on ARE and AAE (Figures 6(a) and 6(b)): In
this experiment, we set the memory size of the sketches to be
constant and vary the per-flow memory consumption.

We find that the ARE and AAE of the Static Sign Bits version
of the CM sketch with the length of sign bits s = 3 is 2.43
times higher than the one of the Dynamic version on average.

Conclusion: This set of experiments showed that the Dynamic
Sign Bits version has better performance than the Static one
under different per-flow memory consumption.

We find that the ARE and AAE of original sketches is more
influenced by the decrease of per-flow memory consumption
than the one of SA Counter sketches. When the per-flow
memory consumption drops to 1.3B, the ratio between the
ARE of the original sketch and of the SA Counter sketch is
10.83 for the CM sketch.

ACKNOWLEDGEMENT
We would like to thank the anonymous reviewers for

their thoughtful suggestions. This work is partially sup-
ported by Primary Research & Development Plan of
China (2018YFB1004403, 2016YFB1000304), and NSFC
(61672061).

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

 0 10 20 30 40 50

A
R

E

Per-Packet Memory(10-4B)

48B(SAC C)
24B(SAC C)
16B(SAC C)
48B(C)
24B(C)
16B(C)

(a) ARE vs. per-packet memory (C).

 0

 0.2

 0.4

 0.6

 0.8

 0 10 20 30 40 50

A
R

E

Per-Packet Memory(10-4B)

48B(SAC CM)
24B(SAC CM)
16B(SAC CM)
48B(CM)
24B(CM)
16B(CM)

(b) ARE vs. per-packet memory (CM).

 0

 3000

 6000

 9000

 0 10 20 30 40 50

A
A

E

Per-Packet Memory(10-4B)

48B(SAC C)
24B(SAC C)
16B(SAC C)
48B(C)
24B(C)
16B(C)

(c) AAE vs. per-packet memory (C).

 0

 3000

 6000

 9000

 12000

 15000

 0 10 20 30 40 50
A

A
E

Per-Packet Memory(10-4B)

48B(SAC CM)
24B(SAC CM)
16B(SAC CM)
48B(CM)
24B(CM)
16B(CM)

(d) AAE vs. per-packet memory (CM).
Fig. 5. Effect of per-packet memory on ARE and AAE using Synthetic Datasets.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 15 20 25 30 35 40 45 50

A
R

E

Per-Flow Memory(B)

Dynamic
Static

(a) Two versions of the CM sketch using SAC (ARE).

 0

 500

 1000

 15 20 25 30 35 40 45 50

A
A

E

Per-Flow Memory(B)

Dynamic
Static

(b) Two versions of the CM sketch using SAC (AAE).
Fig. 6. Comparison between the two versions of SAC on Synthetic Datasets.

VI. CONCLUSION

Thanks to their memory efficiency and fast and constant
speed, sketches have attracted much attention for network mea-
surements. If the flow size distribution is even, there is little
room for improvements compared to previous work. However,
when flow size distribution is highly skewed, existing sketches
are very inefficient in memory usage. No existing work is
capable of achieving memory efficiency without hurting their
constant and fast speed, which is really important in high-
speed network traffic. To address this issue, we propose a
generic technique, namely self-adaptive counters (SA Counter)
in two versions, static and dynamic. Our key idea is simple:
When a counter is going to overflow, we do not increase
it one by one, but increase it with predefined probabilities.
When the counter is small, it just works like a normal counter.

SA Counter makes a small counter able to represent both
small and large values. The error incurred by the probabilistic
increase is theoretically and experimentally proved to be
negligible compared to the size of elephant flows. We apply
SA Counter to three typical sketches: sketches of CM, C, and
CU. Experimental results show that, compared with the state-
of-the-art, sketches using SA Counter improve the accuracy
by up to 13.6 times.

REFERENCES

[1] N. Duffield, C. Lund, and M. Thorup, “Learn more, sample less: control
of volume and variance in network measurement,” IEEE Transactions
on Information Theory, vol. 51, no. 5, pp. 1756–1775, 2005.

[2] J. Zheng, H. Xu, G. Chen, and H. Dai, “Minimizing transient congestion
during network update in data centers,” in Network Protocols (ICNP),
2015 IEEE 23rd International Conference on. IEEE, 2015, pp. 1–10.

[3] Y. Zhou, Y. Zhou, S. Chen, and O. P. Kreidl, “Limiting self-propagating
malware based on connection failure behavior,” in Proc. of Seventh
International Conference on Network and Communications Security
(NCS), 2015.

[4] H. Xu, Z. Yu, C. Qian, X.-Y. Li, Z. Liu, and L. Huang, “Minimizing
flow statistics collection cost using wildcard-based requests in sdns,”
IEEE/ACM Transactions on Networking, vol. 25, no. 6, pp. 3587–3601,
2017.

[5] Y. Zhang, S. Singh, S. Sen, N. Duffield, and C. Lund, “Online
identification of hierarchical heavy hitters: algorithms, evaluation, and
applications,” in Proceedings of the 4th ACM SIGCOMM conference on
Internet measurement. ACM, 2004, pp. 101–114.

[6] R. Ben Basat, G. Einziger, R. Friedman, M. C. Luizelli, and E. Waisbard,
“Constant time updates in hierarchical heavy hitters,” in Proceedings of
the Conference of the ACM Special Interest Group on Data Communi-
cation. ACM, 2017, pp. 127–140.

[7] X. Dimitropoulos, P. Hurley, and A. Kind, “Probabilistic lossy counting:
an efficient algorithm for finding heavy hitters,” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 1, pp. 5–5, 2008.

[8] R. Schweller, A. Gupta, E. Parsons, and Y. Chen, “Reversible sketches
for efficient and accurate change detection over network data streams,”
in Proceedings of the 4th ACM SIGCOMM conference on Internet
measurement. ACM, 2004, pp. 207–212.

[9] K. Xie, L. Wang, X. Wang, G. Xie, J. Wen, G. Zhang, J. Cao, D. Zhang,
K. Xie, X. Wang et al., “Accurate recovery of internet traffic data:
A sequential tensor completion approach,” IEEE/ACM Transactions on
Networking (TON), vol. 26, no. 2, pp. 793–806, 2018.

[10] K. Xie, C. Peng, X. Wang, G. Xie, J. Wen, J. Cao, D. Zhang, and
Z. Qin, “Accurate recovery of internet traffic data under variable rate
measurements,” IEEE/ACM Transactions on Networking, 2018.

[11] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “Trumpet: Timely
and precise triggers in data centers,” in Proceedings of the 2016 ACM
SIGCOMM Conference. ACM, 2016, pp. 129–143.

[12] Y. Li, R. Miao, C. Kim, and M. Yu, “Flowradar: A better netflow for
data centers.” in NSDI, 2016, pp. 311–324.

[13] Q. Huang, X. Jin, P. P. Lee, R. Li, L. Tang, Y.-C. Chen, and G. Zhang,
“Sketchvisor: Robust network measurement for software packet pro-
cessing,” in Proceedings of the Conference of the ACM Special Interest
Group on Data Communication. ACM, 2017, pp. 113–126.

[14] P. Roy, A. Khan, and G. Alonso, “Augmented sketch: Faster and more
accurate stream processing,” in Proceedings of the 2016 International
Conference on Management of Data. ACM, 2016, pp. 1449–1463.

[15] “FPGA data sheet [on line],” Available: http://www.xilinx.com.
[16] G. Cormode and S. Muthukrishnan, “An improved data stream summary:

the count-min sketch and its applications,” Journal of Algorithms,
vol. 55, no. 1, pp. 58–75, 2005.

[17] C. Estan and G. Varghese, New directions in traffic measurement and
accounting. ACM, 2002, vol. 32, no. 4.

[18] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” in International Colloquium on Automata, Languages,
and Programming. Springer, 2002, pp. 693–703.

[19] K. Cheng, L. Xiang, and M. Iwaihara, “Time-decaying bloom filters
for data streams with skewed distributions,” in Research Issues in Data
Engineering: Stream Data Mining and Applications, 2005. RIDE-SDMA
2005. 15th International Workshop on. IEEE, 2005, pp. 63–69.

[20] I. N. Bozkurt, Y. Zhou, T. Benson, B. Anwer, D. Levin, N. Feamster,
A. Akella, B. Chandrasekaran, C. Huang, B. Maggs et al., “Dynamic
prioritization of traffic in home networks,” 2015.

[21] G. Cormode, “Sketch techniques for approximate query processing,”
Foundations and Trends in Databases. NOW publishers, 2011.

[22] Y. Zhang, M. Roughan, W. Willinger, and L. Qiu, “Spatio-temporal
compressive sensing and internet traffic matrices,” in ACM SIGCOMM
Computer Communication Review, vol. 39, no. 4. ACM, 2009, pp.
267–278.

[23] T. Benson, A. Akella, and D. A. Maltz, “Unraveling the complexity of
network management.” in NSDI, 2009, pp. 335–348.

[24] G. Cormode, B. Krishnamurthy, and W. Willinger, “A manifesto for
modeling and measurement in social media,” First Monday, vol. 15,
no. 9, 2010.

[25] P. B. Gibbons and Y. Matias, “Synopsis data structures for massive data
sets,” External memory algorithms, vol. 50, pp. 39–70, 1999.

[26] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
univmon,” in Proceedings of the 2016 ACM SIGCOMM Conference.
ACM, 2016, pp. 101–114.

[27] M. Chen and S. Chen, “Counter tree: A scalable counter architecture
for per-flow traffic measurement,” in Network Protocols (ICNP), 2015
IEEE 23rd International Conference on. IEEE, 2015, pp. 111–122.

[28] C. Hu, B. Liu, H. Zhao, K. Chen, Y. Chen, Y. Cheng, and H. Wu,
“Discount counting for fast flow statistics on flow size and flow volume,”
IEEE/ACM Transactions on Networking, vol. 22, no. 3, pp. 970–981,
2014.

[29] T. Li, S. Chen, and Y. Ling, “Per-flow traffic measurement through
randomized counter sharing,” IEEE/ACM Transactions on Networking
(TON), vol. 20, no. 5, pp. 1622–1634, 2012.

[30] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of approx-
imating the frequency moments,” in Proceedings of the twenty-eighth
annual ACM symposium on Theory of computing. ACM, 1996, pp.
20–29.

[31] N. Hua, A. Lall, B. Li, and J. Xu, “A simpler and better design of error
estimating coding,” in INFOCOM, 2012 Proceedings IEEE. IEEE,
2012, pp. 235–243.

[32] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine, “Synopses
for massive data: Samples, histograms, wavelets, sketches,” Foundations
and Trends in Databases, vol. 4, no. 1–3, pp. 1–294, 2012.

[33] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-wide
measurements,” in ACM SIGCOMM 2018, pp. 561–575.

[34] H. Dai, Y. Zhong, A. X. Liu, W. Wang, and M. Li, “Noisy bloom filters
for multi-set membership testing,” in ACM SIGMETRICS, 2016, pp.
139–151.

[35] H. Dai, L. Meng, and A. X. Liu, “Finding persistent items in distributed,
datasets,” in IEEE INFOCOM, 2018.

[36] H. Dai, M. Shahzad, A. X. Liu, and Y. Zhong, “Finding persistent items
in data streams,” Proceedings of the VLDB Endowment, vol. 10, no. 4,
pp. 289–300, 2016.

[37] Y. Yu, D. Belazzougui, C. Qian, and Q. Zhang, “Memory-efficient
and ultra-fast network lookup and forwarding using othello hashing,”
IEEE/ACM Transactions on Networking, 2018.

[38] Z. Yu, Z. Ge, A. Lall, J. Wang, J. Xu, and H. Yan, “Crossroads: A
practical data sketching solution for mining intersection of streams,” in
Proceedings of the 2014 Conference on Internet Measurement Confer-
ence. ACM, 2014, pp. 223–234.

[39] J. Liu, P. Zhang, H. Wang, and C. Hu, “Countermap: Towards generic
traffic statistics collection and query in software defined network,”
in Quality of Service (IWQoS), 2017 IEEE/ACM 25th International
Symposium on. IEEE, 2017, pp. 1–5.

[40] “The caida anonymized 2016 internet traces.” http://www.caida.org/data/
overview/.

[41] D. M. Powers, “Applications and explanations of zipf’s law,” in Proceed-
ings of the joint conferences on new methods in language processing and
computational natural language learning. Association for Computa-
tional Linguistics, 1998, pp. 151–160.

[42] A. Rousskov and D. Wessels, “High performance benchmarking with
web polygraph,” Software-Practice and Experience, vol. 1, pp. 1–10,
2003.

[43] “Hash website,” http://burtleburtle.net/bob/hash/evahash.html.
[44] Z. Li, B. Chang, S. Wang, A. Liu, F. Zeng, and G. Luo, “Dynamic

compressive wide-band spectrum sensing based on channel energy
reconstruction in cognitive internet of things,” IEEE Transactions on
Industrial Informatics, 2018.

[45] Z. Li, F. Xiao, S. Wang, T. Pei, and J. Li, “Achievable rate maximization
for cognitive hybrid satellite-terrestrial networks with af-relays,” IEEE
Journal on Selected Areas in Communications, vol. 36, no. 2, pp. 304–
313, 2018.

[46] Z. Li, Y. Liu, A. Liu, S. Wang, and H. Liu, “Minimizing converge-
cast time and energy consumption in green internet of things,” IEEE
Transactions on Emerging Topics in Computing, 2018.

[47] F. Xiao, Z. Wang, N. Ye, R. Wang, and X.-Y. Li, “One more tag enables
fine-grained rfid localization and tracking,” IEEE/ACM Transactions on
Networking (TON), vol. 26, no. 1, pp. 161–174, 2018.

[48] F. Xiao, L. Chen, C. Sha, L. Sun, R. Wang, A. X. Liu, and F. Ahmed,
“Noise tolerant localization for sensor networks,” IEEE/ACM Transac-
tions on Networking, vol. 26, no. 4, pp. 1701–1714, 2018.

[49] H. Zhu, F. Xiao, L. Sun, R. Wang, and P. Yang, “R-ttwd: Robust
device-free through-the-wall detection of moving human with wifi,”
IEEE Journal on Selected Areas in Communications, vol. 35, no. 5,
pp. 1090–1103, 2017.

